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A general framework is considered for treating quantum corrections to the 
classical limit in the Wigner function formalism. We discuss the quantal effect 
on the classical phenomena such as period doubling and the breakup of KAM 
tori. By using an exact renormalization group method, the scaling factor for 
Planck's constant is derived as an eigenvalue of the linearized renormalization 
transformation. 
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1. I N T R O D U C T I O N  

Since the d iscovery  by  F e i g e n b a u m  tha t  near  the accumula t ion  po in t  the 
pe r iod -doub l ing  sequence possesses universal  p roper t ies  over  a class of  dis- 
s ipat ive dynamica l  systems, (u a mul t i tude  of  non l inea r  p h e n o m e n a  have 
been found to exhibi t  cri t ical  behav io r  with universal -character is t ics .  Such 
are  in diss ipat ive  systems the in te rmi t ten t  and  mode- lock ing  routes  to 
chaos  as well as the effect of quas iper iod ic  and  r a n d o m  pe r tu rba t ions  on 
different routes,  4 and  universal  p roper t ies  have been also detected in collec- 
tive modes  of  coup led  maps  and  oscil lators.  ~4i F u r t h e r  examples  arise in 
H a m i l t o n i a n  systems, as the pe r iod  n- tupl ing  sequences and  the b r e a k u p  of  
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the last Kolmogorov-Arnold-Moser (KAM) torus in area-preserving 
maps(see refs. 5 for reviews), transients therein caused by random forces, (6) 
and diverse scenarios in higher-dimensional sympleetic maps.(V) Finally, we 
mention the crossover from dissipative to Hamiltonian behavior in a large 
family of chaotic systems, where a universal series of dissipation parameter 
values characterizes the sequential disappearance of strange attractors. (8) 

The behavior in nonlinear dynamical systems exactly corresponds to 
the behavior of thermodynamic systems near critical points. The critical 
point occurs at a definite value of some system parameter, for example, 
there is a critical temperature or a critical strength of nonlinearity 
parameter. In the thermodynamic limit, i.e., the limit of large system size, 
characterized by a length L becoming infinite, singularities appear in the 
thermodynamic functions as the temperature approaches the critical tem- 
perature. These singularities are a result of the divergence of a charac- 
teristic coherence length ~ as criticality is approached. The singularities are 
expressed as universal critical exponents and universal amplitude ratios 
and a universal scaling function. For finite but large L, one can make 
precise statements using the ideas of finite-size scaling. The term universal 
means that the same exponents, etc., are found for a large class of systems. 
Usually, one must change some symmetry of the system in order to change 
the exponents. 

The parameter in nonlinear dynamical systems corresponding to 
system size L is the time. For example, Feigenbaum found a transition to 
chaos at the limit of the period-doubling sequence of the logistic map, i.e., 
for infinitely many iterations of the map. Scaling functions and critical 
exponents are also found. 

The simplest situation is one in which only one parameter needs to be 
tuned to criticality. All the other parameters are "irrelevant," However, it 
is usual to find other parameters which must also be made critical, for 
example, the magnetic field in the case of a ferromagnetic phase transition. 
Typically these "relevant" parameters break a symmetry of the system 
(when they become nonzero), that is, taking into account a relevant 
parameter enlarges the class of systems in a significant way. Corresponding 
to a relevant parameter is an exponent describing the system's behavior for 
small values of the parameter. Generally, this exponent cannot be trivially 
found from the consideration of the restricted class of systems for which the 
parameter is zero. 

Aside from dimensionality, the most typical relevant parameters for 
dynamical systems are those giving the strength of dissipation or of noise. 
Dissipation, if present, destroys the phase-space volume-preserving charac- 
ter of Hamiltonian systems, and obviously affects the long-time behavior 
in a dramatic way, thus indicating that it is relevant. Similarly, noise is 
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relevant, and there are generally critical exponents showing how the system 
properties scale with small but finite dissipation or noise. 

This article considers the relevant parameter h, Planck's constant, the 
parameter representing the generalization of classical dynamics to quantum 
dynamics. It has previously been shown that h is indeed relevant and the 
corresponding critical exponent has been found. (9) However, this critical 
exponent is apparently a trivial concatenation of the classical exponent for 
scaling in the momentum direction with that for scaling in coordinate 
direction. On the other hand, the Feynman path integral formulation of 
quantum mechanics suggests that quantum effects are due to fluctuating, 
i.e., noisy, classical paths, albeit paths which must be added up taking into 
account phase relations. Therefore, the question addressed in this paper is: 
Why does quantum noise result in a "trivial" quantum exponent, while 
classical noise has a nontrivial exponent? 

2. R E N O R M A L I Z A T I O N  GROUP 

The universal nature of critical phenomena is, in each case, based 
upon the properties of the renormalization group (RNG) transformation 
associated with the specific problem. In the generic situation, the RNG is 
defined on the space of dynamical systems under study (e.g., in the case of 
the Hamiltonian period-doubling scenario a set of area-preserving maps), 
and it transforms a system by a given prescription (e.g., iteration of the 
map and scaling) into another one. The RNG transformation thus forms a 
mapping in system space. The dynamical system in a critical state (e.g., an 
area-preserving map at the accumulation point of the period-doubling 
sequence) corresponds typically to a fixed point of the RNG transforma- 
tion, whose unstable manifold represents the route(s) through which the 
critical state is reached by changing the control parameter(s) of the 
dynamical system, and whose stable manifold forms the subspace of 
systems at criticality. The elements of the stable manifold are attracted to 
the fixed point upon the RNG transformation, whereas a system off criti- 
cality is driven toward the unstable manifold. These features constitute the 
source of universality. Each system in a critical state behaves asymptoti- 
cally like the one at the fixed point, and near criticality the behavior of a 
system is determined by those forming the unstable manifold. In the sim- 
plest case the unstable manifold has dimension one. Each additional rele- 
vant variable increases the dimension of the unstable manifold by one. An 
important common characteristic of critical phenomena is scale invariance, 
i.e., near criticality similar behavior is observed if certain variables are 
appropriately rescaled. The scale factors are universal in the sense that they 
characterize asymptotically all systems driven by the RNG transformation 
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toward the fixed point or the unstable manifold. In particular, the factor 
for a control parameter is obtained as the eigenvalue of the RNG transfor- 
mation linearized about the fixed point. 

The suggestion of Grempel e t  al. (9) that universal scaling is not only 
the property of classical dynamical systems, but of quantum as well, is 
in one sense surprising. Namely, quantum systems can certainly not be 
described merely as classical systems with one extra parameter: rather there 
are profound differences in the essence of the two theories. However, within 
the framework of the RNG, direct comparisons can be made. It is our pur- 
pose to provide these comparisons. Specifically, in the Hamiltonian period- 
doubling scenario and near the destruction of KAM tori, the quantum map 
exhibits scale invariance if, simultaneously with the classical operations, 
Planck's constant h is appropriately rescaled. The value of the scale factor 
was proposed to be I~/~l, where e and fl are the classical scaling constants 
for the phase space coordinates, with different respective values for period 
doubling and the KAM problem. Subsequently the conjecture has been 
further substantiated by a study of the Wigner function of a periodically 
kicked one-dimensional particle, where the classical action was found to 
determine the lowest order quantum correction. (1~ Independently, for 
the area-preserving period-doubling problem, Graham formulated a n  
approximate RNG transformation for the moments of quantum fluctua- 
tions up to O(h2)/11) Using uniform moments and quadratic interpolation 
for the fixed-point map, he obtained a dominant eigenvalue, associated 
with h 2, which was numerically close to ~2fl2. A recent computer study by 
Radons and Prange (12) demonstrated the scale invariance of the quantum 
standard map in the situation where the classical map exhibited a critical 
KAM torus with the golden mean winding number. 

In this paper the lowest order quantum fluctuations are discussed in 
the Wigner function formalism for a periodically driven one-dimensional 
particle. We study systems whose classical counterparts are close to the 
period-doubling accumulation point or to the breakup of the last KAM 
torus. In order to establish the linearized RNG transformation for the 
fluctuations in both problems, the composition rule of the propagator is 
worked out for arbitrary (phase-space-dependent) cubic cumulants. The 
composition is found to possess a symmetry: If the constituent cumulants 
are derived from the classical action in a certain way, then the cumulants 
resulting from their composition will have the same relation with respect to 
the composed action. It follows that the linearized RNG transformation 
preserves the dependence of the fluctuations on the classical action for 
arbitrary number of RNG iteration steps. Thus the standard RNG picture 
does not apply, in which typically an initial perturbation is independent of 
the perturbed system, and where a spectral decomposition of the linearized 



RG Study of Hamiltonian Systems 179 

RNG transformation is necessary to determine the evolution of a system 
near the fixed point. There asymptotically the eigenvalues with modulus 
larger than one arise as relevant, becoming the universal scale factors for 
the given phenomenon. This happens, e.g., in the case of classical random 
perturbations. Nonetheless, an important aspect of RNG theories is 
preserved in the quantum problem, namely, the scale factor of Planck's 
constant emerges as an eigenvalue. If the classical action approaches a fixed 
point (in either the period-doubling or the KAM problem), we will show 
that the quantum moments will converge to the eigendirection of the 
]inearized RNG transformation with eigenvalue ~2fl2 which is associated 
with h 2. 

3. W l G N E R  F U N C T I O N  P R O P A G A T I O N  

Consider a particle in one dimension driven by a force periodic in time 
with period T. The classical action for the period (0, T) is 

T 

S(x,x')=fo L(x(t),2(t),t)dt, x(0)=x,  x(T)=x' (1) 

where x(t) in the argument of the Lagrangian L is the classical orbit, 
assumed to be unique for fixed initial x and final x' points. The action 
generates the momenta as 

p = -~1S(x, x'), p'= 02S(x, x') (2) 

where 0iS denotes the partial derivative in terms of the ith argument. If 
Eq. (2) can be uniquely solved for x' and p' with given x and p, as is the 
case near both the period-doubling accumulation point and the last KAM 
torus, then it uniquely determines the Poincar6 map of the system. 

The use of the Wigner function for the characterization of the quan- 
tum state has several advantages. (~3) The Wigner function determines the 
expectation values of functions of the position and momentum operators, 
and in the h ~ 0 limit it goes over to a classical probability density function 
in phase space. For increasing h, its "widening" starting out from a classical 
Dirac delta probability density can be interpreted as the signature of 
quantum fluctuations. A further advantage is that it is real. In the pure 
state with wave function ~9(x) the Wigner function assumes the form 

W(x, P)= j_o~ ~h  exp (~- )  ~* (3) 



180 Gy6rgyi et" al. 

Equivalently, we can consider its Fourier transform in the momentum 
variable p, which reads as 

(4) 

In what follows the time evolution of the above function will be studied by 
using the technique of path integrals. (14) If the wave function evolves from 
t = 0 t o  t = T a s  

f 
+ ~  

~,T(x') = dx U(x' l  x) ~,o(X) (5) 

then the time evolution of the transformed Wigner function (4) is evidently 
given by 

o~(x ' ,  ~') = dx d~ ~c(x', ~' I x, ~) oo(x, ~) (6) 
- - o o  

with 

(7) 

Note that the kernel U depends also on h as a parameter, thus x will 
depend on h in a more complicated fashion than indicated explicitly on the 
right-hand side. It follows from Eq. (7) that the propagator • satisfies 

~c*(x', r  r : ~c(x', - r  I x, - r  (8) 

which is equivalent to the property that the propagator of the Wigner 
function is real. Hence simple symmetry relations can be obtained for the 
modulus and the phase of the propagator. In particular, if 

x(x', #'l x, ~) = p(x, #, x', ~')exp[-i~b(x, #, x', ~')] (9) 

with p and ~b real, then 

p(x, ~, x', ~') = p(x, -~ ,  x', - ~ ' )  

~(x, r x', ~')-- -~(x ,  -~ ,  x', - ~ ' )  

(10) 

(11) 

Although these functions are not necessarily analytic in h, low-order quan- 
tum corrections are expected to be well described by the formal expansions 
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p(x, ~, x', C) ~ po(x, x') 

+ haEp~(x, x') + ~pao(X, x') 

+ 2ff~'p11(X, X') + ff'2po2(X , X ' ) ]  --}- O(h 4) (12) 

~(x, ~, x', ~') ~ ~lo(X, x') + ~'~o,(X, x') 
fft,.L(2)[ y + h 2 [ ~ ( x ,  x') +~ ~'o, ,~, x') 

+ ~3~3o(X, x') + 3~2~'~2~(x, x') 

+ 3 ~ ' 2 ~ ( x ,  x') + ~'3~o3(X, x')]  + o(h 4) (13) 

It is noteworthy that Eqs. (9), (12), and (13) correspond to an Airy-type 
approximation combined with derivatives of the Dirac delta for the 
propagator of the Wigner function, (15) which one can see by performing 
Fourier transformation in the variables ~ and ~'. 

In the h ~ 0 limit, as opposed to the propagator U of the wave func- 
tion, the propagator of the Wigner function and its Fourier transform K 
will become independent of h. Since the semiclassical Feynman propagator 
for the wave function is (~6) 

U(x' , x)= (2~zh) i/2 ,~2S(x, x'),~/2 exp [~ S(x, x')] (14) 

we obtain from Eqs. (7), (9), (12), and (13) 

•cl(X', ~'J x, ~')= (2~) -11~12S(x, x')l 

• e x p [ - i ~ l S ( x , x ' ) - i ~ ' Q 2 S ( x , x ' ) ]  (15) 

This propagator is actually the Fourier transform of the kernel of the 
Liouville operator, as it should be, since the classical limit of the Wigner 
function is a phase space probability density. 

The lowest order quantum correction involves the terms listed in 
Eq. (13). Below we shall only concentrate on the cubic terms in the expo- 
nent, because it is due to them that the propagator will deviate from 
a singular conditional distribution and acquire a finite "width." The 
quadratic terms in the modulus are also qualitatively new with respect 
to the classical propagator. Their overall behavior, however, supports the 
conclusions we will draw from the study of the cubic exponent, so we omit 
here the discussion thereof. 

In what follows we will establish the composition rule for the cubic 
coefficients based on the semigroup property of the propagator 

K"(x", ~"[ x, ~) = dx' d~' K'(x", I x ,  ~') ~(x', [ x, ~) (16) 
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We take the simplified form 

g(x', ~'1 X, ~) ~ (27C) -1 1Ol2S(x , x')l 

x exp{ --i[~ 8lS(x ,  x') + ~' 82S(x, x')]  

-- ih2[r , x') + 3~2~'(b21(x, x') 

-~" 3~'2~12(X, X') "t- ~t3~03(X, xt)]} (17) 

and ~' similarly contains S' and ~b}. The question we would like to answer 
is what the cubic coefficients in the exponent of ~c" are, that is, how the 
transformation 

, ,  

q~j -* ~b o (18) 

looks explicitly. 
For h = 0 the classical addition law for the actions is obtained, 

S"(x, x") = S(x, 2) + S'(~, x") (19) 

where the intermediate point 2(x, x") extremizes the sum as 

02S(x, )~) + ~ S'(:?, x") = 0 (20) 

In leading order in h, small deviations from the extremizing point are 
allowed. Thus we expand the O(h ~ terms of the exponent linearly in 

= x ' - 2 ( x ,  x"), while we take the O(h 2) terms at ~ = 0. Integration over 
results in a term proportional to the Dirac delta 

5 ( ~ ' -  (0~2)~ - ((32)~) ~") (21) 

which makes the integration by ~' trivial. Finally, equating the coefficients 
of the respective cubic monomials in the exponents on both sides of 
Eq. (16), we obtain the transformation 

~b~o = ~3o "~-3(~ 1 x)~21 "~ 3((~ 1-~)2 ~12 "~-(01-~) 3 (0o3 "1- ~3o) (22a) 

~b;z = (022) ~b21 + 2(O~ff)(O2ff) ~b~2 + (~1-~) 2 ~11 

+ (012) 2 (022)(~03 + ~b~o) (22b) 

~b~2 = (~,ff) ~bl z + 2(~2)(~22) ~bi~ + (~2~) 2 ~12 

+ (O~ff)(O2ff) 2 (~bo3 + ~b;o) (22c) 

~b~ = ~b~)3 + 3(02ff) ~bi2 + 3(~2ff) 2 ~b~ + (Ozff)3 (~o3 + ~b~o) (22d) 
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For the sake of brevity we have omitted the functions' arguments, which 
one can retrace from 

= x")  
(23) /! /! 

= x " )  

9~ = )?(x, x") 

4. Q U A N T U M  PHASE CONDITION 

The composition rule (22a)-(22d) bears a strong resemblance to the 
composition of covariance matrices in the case of classical noise. (6) There 
the matrix elements are analogous to the cubic coefficients ~b~ and ~b,~, and 
the rule prescribes how two arbitrary initial covariance matrices conspire 
to produce a third one. The above composition law for quantal fluctuations 
does the same at the first glance. There is, however, an important 
restriction on the initial ~b 0 and ~b~ coefficients, which will turn out to be 
preserved along the time evolution. That restriction can be immediately 
seen by starting out from the semiclassical Feynman propagator in Eq. (14) 
and then constructing the propagator ~: as prescribed by Eq. (7). Then the 
phase ~b satisfies 

x+-,x'+T)-s ,x-T) (24) 

which results in the cubic coefficients 

~bij (x, x ' ) =  1/24 O~O~S(x, x') (25) 

Even if other corrections of O(h 2) are included in the Feynman propagator, 
the cubic coefficients remain those of Eq. (25). 

It is a key obsrvation of this paper that relation (25) is invariant under 
time evolution of the propagator. Specifically, if ~bii is determined by the 
classical action S through (25), and similar relation exists between a ~b~ and 
an action S', then the resulting ~b~. coefficients are given by Eq. (25), where 
the composed action S" should replace S. We shall demonstrate that 
statement on the component ~b~0. According to Eq. (22a), the composition 
leads to 

24~b~o = O~S+ 3((~1.~" ) 0 2 ~ 2 8 - ~  -- 3(~1.3c) 2 ~ lO2S-J i  - (~ l J~)  3 ( ~ 3 3 - ~ -  0 ~ S ' )  ( 2 6 )  
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where S and S' stand for S(x, x') and S'(ff, x"), respectively. On the other 
hand, by differentiating Eq. (20) twice in terms of x, one obtains the 
identity 

(Olx)r t~lt~2S-}-(~1ff)3(t~3S-~O~St)=((3~f~)t~12 S (27) 

Substitution of Eq. (27) into Eq. (26) results in 

24(/~o=O~S+ 2(O~ff)aZOzS+(t~1Y~)2 010~S+(a21~)012S (28) 

The latter formula equals 

O~S"(x, x") (29) 

as it can be seen by differentiating Eq. (19) thrice in terms of x and using 
Eq. (20). The derivation for the other components goes similarly. Thus we 
arrive at the important conclusion that in each iteration step of the time 
evolution of the propagator, the terms characterizing the quantum fluctua- 
tions in lowest order are determined through Eq. (25) by the action at the 
classical orbit. This is a general proof of the claim stated in ref. 10, based 
on one composition step in the case of the periodically kicked particle. 

At this point a remark is in order. In Eq. (24) it is not necessary to 
restrict the action S to a time period T, as defined in Eq. (1). In principle 
the time interval can extend to arbitrarily long but finite times. Then 
relation (25) also holds between the actual S and ~bij, and one always finds 
sufficiently small h so that the phase of the propagator K becomes as in 
Eq. (17) with ~b U substituted from Eq. (25). Our previous derivation can be 
considered, therefore, as a consistency proof within the path integral 
formalism. For long times it still remains an open question, however, how 
small should h be so that the approximation (17) with (25) remains valid. 
The problem of the appropriate rescaling of h will be discussed below. 

The above results enable us to study quantum systems whose classical 
counterpart undergoes a Hamiltonian period-doubling scenario, or has a 
critical KAM torus with a noble winding number. The classical properties 
of such systems have been extensively discussed in the literature (see ref. 4 
and references therein). For the sake of simplicity we will restrict ourselves 
to the period-doubling route; the derivation can be performed with little 
modification for the KAM problem. 

The RNG transformation associated with the classical period doubling 
is defined on the action function a s  O7) 

~[ S ] ( x ,  x") = ~[~[S(x/~, ~(x, x")) + s(~(x, x"), x"/~)] (30) 

Here the intermediate point ff should extremize the right-hand side. The 
factors ~ and /~ are to be calculated from the fixed-point equation 



RG Study of Hamiltonian Systems 185 

/~[S*] = S*, which also determines the fixed-point action function S* and 
the corresponding ~*. Numerically, ~=-4 .018. . .  and //=16.36... are 
obtained. ~s'17~ The fixed-point function is universal in the sense that it 
attracts the action function of any area-preserving map at the accumulation 
point of its period-doubling scenario. The factor 6H = 8.721.., which scales 
the control parameter and is the Hamiltonian equivalent of Feigenbaum's 
6, is obtained as the dominant eigenvalue of the linearized RNG transfor- 
mation around the fixed point35'~7) 

We wish to apply the RNG transformation to the quantum fluctua- 
tions in classically period-doubling systems. Therefore the transformation is 
to be extended to the propagator K. Using the composition law (16), we 
obtain 

f+oO ffq-cO 
kl-~c](x", ~"J x, ~)= dx' d~' --oQ --oo 

x ~c(x"/~,//~"! x', ~') ~(x', ~'1 x/a,//~) (31) 

This transformation reduces to Eq. (30) in the limit h ~ 0 ,  if the 
propagator is taken in the form of Eq. (17). Assume now that the classical 
action appearing in Eq. (17) is the fixed-point function S*. In this case the 
composition rules (22a)-(22d) define the linearized RNG transformation 
k[-~b] on the cubic coefficients ~b 0 as follows. Let both ~b,j and ~b~ in Eqs. 
(22a)-(22d) be identical and the intermediate point be the universal 4". 
Then 

kDJ,j (x, x") =//3r x"/~) (32) 

Instead of a general spectral analysis of the linear RNG transformation 
(32), we must rather consider the set of coefficients ~b~. related to the 
fixed-point action S* via Eq. (25). It is this set ~b~ to which the initial coef- 
ficients ~b 0. converge if the classical action S converges to S*. Our main 
observation is that ~b~ forms an eigenvector of the RNG transformation, 

k~[~*]v = 2~b* (33) 

where the eigenvalue is 

2 =  ~2fl2 (34) 

as one can easily convince oneself via elementary algebra. Since the 
coefficients ~b 0̀  characterize the O(h 2) term, Planck's constant scales with 
I:q/I, in accordance with refs. 9-12. 
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5. D I S C U S S I O N  

An alternative derivation of the quantum phase condition, Eq. (25), 
sheds further light on the difference between classical and quantum noise. 
Consider again Eq. (7), which can be regarded as a factorization of the 
Wigner propagator ~c into a pair of quantum propagators U. Exact quan- 
tum mechanics preserves this factorization. Therefore, an exact calculation 
of Eq. (16) expresses x" as a pair of propagators U", where 

f 
o o  

U'(x" l x) = dx' U'(x" l x') U(x' l x) (35) 
- - o 0  

This may be seen by using integration variables x'+_ h~'/2 in Eq. (16). 
However, the semiclassical approximation also preserves the factoriza- 

tion. What is more, it is well known that if (35) is calculated in semiclassi- 
cal approximation, i.e., using the form (14) for U and the stationary phase 
approximation for the integral, then the semiclassical approximation to the 
propagator U" is given by Eq. (14) using the action S" of Eq. (19). Thus 
Eq. (25) is invariant in time. 

One curiosity is the following. In doing Eq. (35) by stationary phase 
the exponent 

S'(x", x') + S(x', x) (36) 

is expanded in x' to second order about the stationary phase point 2, given 
by (20). In other words, the approximate exponent involves at most second 
derivatives of the S's with respect to their arguments. On the other hand, 
in doing the integral of Eq. (16) by the method of Section3, third 
derivatives of the actions S are encountered. 

If it were indeed true that the standard stationary phase calculation on 
(35) led to third-order errors in the phase S", then the calculation of 
Section 3 would actually be going beyond stationary phase. However, it 
is clear that one could have kept the expansion of (36) to third order 
in ( x ' - 2 )  without introducing corrections to the phase. Therefore, the 
phase calculation (19) is actually correct to third order, and the time inde- 
pendence of (25) follows. 

The factorization of the Wigner propagator just discussed seems to be 
an essentially quantum symmetry. It is not possible that classical random 
noise preserves a factorization, even assuming one to be present in a 
classical propagator for the probability density. Another fact should be 
emphasized, namely that random noise has infinitely many degrees of 
freedom, while the nonvanishing quantum cumulants are determined by 
the classical action. 
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It remains to study whether the RNG analysis can be extended to 
higher orders in h, within the framework of corrections to the quasiclassical 
approximation. Jensen and Niu, (lsl by a totally different approach, found 
numerically that the next order, h 4, scaled in a way consistent with (~/~)4 

In conclusion, we have generalized earlier renormalization approaches 
to quantum noise for systems which classically exhibit critical behavior. 
The framework shows a strong analogy with the renormalization method 
for classical noise(6/; however, a specifically quantum requirement intro- 
duces a restriction: The "widening" of the propagator of the Wigner func- 
tion, in lowest order in h, is directly determined by the classical action. 
That property proves to be a symmetry of the renormalization transforma- 
tion; thus, it is preserved along physically meaningful renormalization tra- 
jectories. Near the fixed point the quantum fluctuations are characterized 
by an eigenvalue that can be written in terms of classical scale factors. 

A C K N O W L E D G M E N T S  

Enlightening discussions with N. Balazs, J. Bene, L. Di6si, S. Fishman, 
J. Jensen, L. Palla, G. Radons, P. Sz6pfalusy, and N. Tishby are hereby 
acknowledged. Special thanks are due to N. Balazs for his pointing out the 
relation of this study with earlier works, to P. Sz6pfalusy for his insightful 
questions, and to both scientists for their encouragement. Part  of this 
work was done during the Workshop on Quantum Chaos in June 1990 
organized by the International Center for Theoretical Physics, Trieste, 
Italy. Financial support by the Center is gratefully acknowledged. This 
work was also supported in part by NSF grant DMR8716816 and by the 
BMFT within the Deutsch-Ungarisches WTZ-Abkommen. 

R E F E R E N C E S  

1. M. J. Feigenbaum, J. Stat. Phys. 19:25 (1978); 21:669 (1979). 
2. H.-G. Schuster, Deterministic Chaos (Physik Verlag, 1985). 
3. P. Collet and A. Lesne, J. Star. Phys. 57:967 (1989). 
4. S. P. Kuznetsov, Izv. Vys. Ucheb. Zaved. Radiofiz. 28:991 (1985). 
5. J. M. Greene, Physica 18D:427 (1986); R. S. MacKay in Nonlinear Dynamics Aspects of 

Particle Accelerators, J.M. Jowett, M. Month, and S. Turner, eds. (Springer-Verlag, 
Berlin, 1986). 

6. G. Gy6rgyi and N. Tishby, Phys. Rev. Lett. 62:356 (1989). 
7. J. M. Greene and J.-M. Mao, Phys. Rev. A 35:3911 (1985). 
8. C. Chen, G. Gy6rgyi, and G. Schmidt, Phys. Rev. A 36:5502 (1987). 
9. D. R. Grempel, Sh. Fishman, and R. E. Prange, Phys. Rev. Lett. 53:1212 (1984). 

10. Sh. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. A 36:289 (1987). 



188 Gy6rgyi e t  al. 

11. R. Graham, Europhys. Lett. 3:259 (1987). 
12. G. Radons and R. E. Prange, Phys. Rev. Lett. 61:1691 (1988). 
13. N. L. Balazs and B. K. Jennings, Phys. Rep. 104:349 (1983). 
14. L. S. Shulman, Techniques and Application of Path Integration (Wiley, New York, 1981 ). 
15. M. V. Berry and N. L. Balazs, J. Phys. A 12:625 (1979). 
16. R. J. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10:4114 (1974). 
17. M. Widom and L. P. Kadanoff, Physiea 5D:287 (1982). 
18. J. H. Jensen and Q. Niu, Phys. Rev. A 52:2513-2519 (1990). 


